Ежемесячные архивы: Февраль 2018
LumaSmart и LumaShield фирмы LumaSense Technologies для измерения температуры
Преимущества волоконно-оптических систем LumaSmart и LumaShield производства фирмы LumaSense Technologies для измерения температуры участков опасного перегрева обмотки трансформаторов Метод контроля температуры обмоток трансформаторов в реальном времени, с помощью волоконно-оптических систем LumaShield и LumaSmart, дает ряд преимуществ. В отличие от обычных способов волоконно-оптические технологии позволяют измерять температуру участков потенциально опасного нагрева («горячих» точек) непосредственно на обмотке. Кроме того, прямые измерения, проводимые при помощи волоконно-оптических систем для контроля температуры LumaShield и LumaSmart, позволяют: проверять правильность конструкционных решений при изготовлении трансформаторов; безопасно увеличивать обычную нагрузку без повреждения трансформатора или уменьшения срока его службы; обеспечивать реальную возможность динамической нагрузки; точно задавать уровень температуры при производстве трансформаторов, который может использоваться в качестве опорного при эксплуатации трансформаторов; обнаруживать нарушения работы системы охлаждения, которые невозможно определить при моделировании схем изменения температуры обмотки; планировать обслуживание трансформатора; непосредственно управлять системами охлаждения «горячих» точек обмотки, тем самым продлевая срок службы трансформатора. Проверка правильности конструкции трансформаторов и качества изготовления с помощью систем LumaShield и LumaSmart Увеличение температуры в определённых точках обмотки при заданной нагрузке – необходимый параметр для определения возможности увеличения нагрузки на трансформатор. Стандартом IEEE Std. C7.12.00 установлено, что максимальная температура самой «горячей» точки не должна превышать 80°C. Предполагалось, что температура «горячих» точек может быть рассчитана на основании измерения температуры масла, а увеличение средней температуры обмотки – сопротивления в процессе стандартного коммерческого теста в соответствии со стандартом IEEE C57.12.90 (тепловые испытания). Однако результаты тестирования в соответствии с требованиями IEEE и IEC показывают, что температура, рассчитанная с помощью методов моделирования, значительно отличается от реального значения. Таким образом, при проведении тепловых испытаний рекомендуется использовать волоконно-оптические датчики, т.к. результаты , полученные в реальном времени с помощью волоконно-оптических систем LumaShield и LumaSmart, являются достоверными. При этом индикаторы температуры обмотки трансформатора следует настроить в реальном времени в соответствии с показаниями систем LumaShield и LumaSmart.
Преимущества использования фотоакустических газовых мониторов INNOVA 1412 и INNOVA 1314
Преимущества использования фотоакустических газовых мониторов INNOVA 1412 и INNOVA 1314 За последние несколько десятилетий были сделаны значительные изменения в изолирующей среде, используемой в РУ высокого напряжения, так как многие производители заменили системы с маслобарьерной изоляции на системы с элегазовой изоляцией. На текущий момент производство энергосистем общего назначения использует около 80% всего производства элегаза, в основном в газовой изоляции (GIS), выключателей, а также, в кабелях, трубчатых линиях электропередач, трансформаторах. К сожалению, элегаз (SF6), является одним из самых мощных парниковых газов с общим «индексом глобального потепления» в 24000 раз больше, чем СО2. На текущий момент охрана окружающей среды является очень серьезной проблемой, но производители сих пор не нашли каких-либо адекватных заменителей для SF6. Помимо опасности для окружающей среды, которую представляет SF6, также следует учитывать возможность образования токсичных побочных продуктов (вроде SOF2, SO2 и HF), которые могут снизить безопасность условий труда, а также навредить здоровью работников. Газовый монитор INNOVA 1314 c распределительным устройством INNOVA 1309 В 1997 году был принят так называемый Киотский протокол. Он содержит в себе пункт об ограничении выбросов парниковых газов, включая SF6. Поскольку в настоящий момент не существует возможности заменить SF6 на другие, более безопасные газы, были введены процедуры контроля с целью минимизации выбросов SF6 . Решение данной проблемы позволяют осуществить фотоакустические газовые мониторы INNOVA 1412 и INNOVA 1314. При испытаниях переключателей и распределительных устройств их помещают в специальную испытательную камеру. Для обеспечения герметичности компонентов и мониторинга концентрации SF6 данные считываются с нескольких точек , при Газового монитора INNOVA 1314, подключенного к распределительному устройству INNOVA 1309. AREVA Suzhou. Стрелочные приводы высокого напряжения Для компании AREVA Suzhou в Китае использование мониторов INNOVA 1412 и INNOVA 1314 является ценной и экономящей время технологией, так как газовые мониторы INNOVA 1412 и INNOVA 1314 являются очень простыми в эксплуатации, а также способными измерить концентрацию SF6 (от 6ppb) менее чем за 15 сек с учетом компенсации содержания частиц воды. Основными преимуществами мониторов INNOVA 1412 и INNOVA 1314 являются высокая стабильность и повторяемость результатов измерений, очень низкие пределы обнаружения концентрации SF6 (6ppb), линейность, а также необходимость калибровки всего лишь 1-2 раза в год. Пластиковая завеса и измерительная система внутри испытательной камеры Корпус, в котором установлен компонент, вентилируется наружным воздухом, чтобы избежать интерференции с возможными утечками из других составных частей системы, расположенных в испытательной камере. Компоненты расположены за специальными пластиковыми завесами, чтобы окружающий их объем воздуха был минимальным. В зависимости от размера составной части, данные по SF6 считываются при помощи монитора INNOVA 1412 или INNOVA 1314 с одной, двух или трех точек в течение 4 или 12 часов, чтобы точно определить, герметичен ли компонент. Так как составные элементы заполнены чистым SF6 под давлением в 6 бар, даже малейшие утечки покажут резкое увеличение концентрации SF6, в то же время концентрация за пластиковой завесой с герметичным компонентом будет стабильной.
Применение пирометра LumaSense Impac IPE 140/45 в составе системы LumaSense FEGT для измерения температуры газа на выходе из топки
Применение пирометра LumaSense Impac IPE 140/45 в составе системы LumaSense FEGT для измерения температуры газа на выходе из топки Одной из основных задач при мониторинге параметров работы котельного агрегата является контроль температуры газа на выходе из топки. В случае если температура газа будет слишком высокой, остатки частиц золы оплавятся на трубах и навесных деталях, образуя шлак, что снижает эффективность теплообмена с экраном и приводит к увеличению числа операций по очистке отложений шлака и золы, а также коррозии труб и снижению устойчивости к нагрузкам. Все данные факторы служат причиной увеличения вероятности аварийной ситуации. В свою очередь, низкая температура газа может указывать на незавершенность процесса сгорания, приводящую к снижению производительности. Таким образом, контроль за температурой газа на выходе позволяет операторам регулировать и оптимизировать процесс горения, а также правильно эксплуатировать топку котла. Пирометр IPE 140/45 Компания LumaSense применила 50-ти летний опыт в сфере инфракрасной техники для создания комплексного решения, специально предназначенного для более эффективного и безопасного мониторинга газа на выходе из топки котла. Система FEGT В данной системе применяется пирометр Impac IPE 140/45 со специальным фильтром на 4,5мкм., необходимым для мониторинга температуры пламени и газообразных продуктов горения. Продукты сгорания ископаемого топлива содержат примерно 10% CO2. Инфракрасное излучение данных молекул измеряется при помощи пирометра Impac IPE 140/45 для получения точных данных о температуре горячего газа. Регулируемая оптика, установленная на пирометре Impac 140/45, позволяет сфокусироваться на зоне интереса и получить достоверные данные по температуре. Общий вид системы LumaSense FEGT Система LumaSense FEGT, в составе которой применяется данный пирометр, специально спроектирована для работы в тяжелых промышленных условиях и обеспечивает защиту пирометра Impac IPE 140/45. Герметичный защитный кожух с устройством “VORTEX” воздушного охлаждения и встроенным фильтром обеспечивают непрерывную эксплуатацию пирометра Impac IPE 140/45. Блок воздушной продувки обеспечивает минимально загрязнение съемного смотрового окна CaF2.Монтаж выполняется при помощи специального шарового фланца.
Преимущества бесконтактных датчиков для измерения скорости и длины LaserSpeed в плане производительности и экономии
Преобразователи бумаги, пленки, фольгированной продукции находят применение там, где необходим жесткий контроль длины и скорости продукции в процессе производства. Применение включает в себя непрерывное измерение длины, контроль дифференциальной скорости, контроль резки, позиционирование продукции, контроль нанесения печати и покраски, а также другие нужды. Большинство производителей зависят от точности их электропривода или механических контактных преобразователей. Но, механические преобразователи могут терять контакт на различных поверхностях продукта из-за проскальзывания или вибрации, и требуют частой калибровки из-за механического износа. Погрешность контактного преобразователя (около 2%) может конвертироваться в значительные денежные убытки из-за возврата продукции, отходов, технического обслуживания и времени простоя системы. Для решения этой проблемы, производители устанавливают бесконтактный датчик LaserSpeed компании Beta LaserMike на своих производственных линиях непосредственно для измерения длины и скорости продукции. В датчике LaserSpeed используются передовые лазерные технологии для точного измерения длины и скорости продукции в процессе производства без контакта с материалом. Лазерный датчик проецирует уникальный узор на поверхности продукции. Во время ее движения лазерный луч отражается обратно в блок LaserSpeed. Эта информация преобразуется в скорость продукции и импульсы, производимые для определения длины изделия. Измерения длины и скорости проводятся с точностью ±0,05% и погрешностью ±0.02%. Датчики LaserSpeed применяется для широкого спектра производственных и упаковочных процессов, вот некоторые из них - обеспечение точного измерения длины продукта и скорости резки/перемотки, регулирование покраски/ламинирования, контроль критически важных операций резки и мониторинг натяжения полотна. В результате более высокой точности измерений и более жесткого контроля процессов, датчики LaserSpeed предоставляют целый ряд преимуществ, повышающих прибыль и эффективность производства. В датчиках LaserSpeed компании Beta LaserMike доступны диапазоны измерения скорости от 0 м/мин до 20000 м/мин, расстояния до объекта контроля до 2500 мм, и глубина зоны измерения до 200 мм. Специальные модели LaserSpeed при измерении учитывают движение продукции в обратную сторону, а также нулевую скорость (остановку).
Датчик LaserSpeed помогает производителям улучшить качество продукции повысить производительность и экономить средства
В датчиках LaserSpeed используются передовые лазерные технологии, для точного измерения длины и скорости горячей и холодной стали и цветных металлов бесконтактным способом. Лазерный датчик проецирует уникальный узор на поверхности продукции. Во время ее движения лазерный луч отражается обратно в блок LaserSpeed. Эта информация преобразуется в скорость продукции и импульсы, производимые для определения длины изделия. Измерения длины и скорости проводятся с точностью ±0,05% и погрешностью ±0.02%. В LaserSpeed не используются никакие движущиеся части и он калибруется на заводе-изготовителе. Это идеальная замена для контактных тахометров, у которых велика вероятность ошибок в измерениях, вызванных проскальзыванием, загрязнением поверхности, износа, и экстремальными условиями окружающей среды. LaserSpeed работает со всеми видами продукции, такими как прутки, шины, тубы, трубы, слябы, холодный/горячий прокат и профили. Beta LaserMike предлагает серию датчиков, включающую в себя: Датчики LS8000 серии - точное измерение длины и скорости на расстояниях от 300 мм до 2500 мм, и скоростях до 20 000 м/минДатчики LS9000 серии - аналогичны по производительности LS8000, а так же позволяют учитывать движение в обратном направлении и нулевую скорость (остановку) В зависимости от применения, датчики LS8000 и LS9000 могут быть использованы самостоятельно или упакованы Е-, X - или C-исполнение корпуса. Кожухи Е- и X - позволяют применять датчики в жестких сухих или горячих влажных средах. Или установить внутри C-рамки рентгеновского датчика. Оба устройства оснащены блоком воздушной очистки/быстрозаменяемым окном и блоком воздушной продувки, обеспечивающие поддержание чистоты системы и очистку пути лазера для правильного измерения и максимально долгой безотказной работы. Также доступен ряд принадлежностей для решения конкретных эксплуатационных и производственных задач.
Компания LumaSense Technologies анонсировала новую версию пирометра серии 6 – ISR 6-TI Advanced
Компания LumaSense Technologies анонсировала новую версию пирометра серии 6 – ISR 6-TI Advanced Компания LumaSense Technologies представила новую версию пирометра серии 6 – ISR 6-TI Advanced, который является новой инновационной разработкой, объединяющей в себе возможности инфракрасного пирометра и устройства формирования ИК изображения (тепловизора). Данный пирометр открывает новые возможности для производителей, чья сфера деятельности подразумевает нагрев материалов до высоких и сверхвысоких температур. При нагреве до высоких температур контактные методы измерения (термопары) становятся неэффективными, так как подобные температуры приводят к разрушению поверхности термопар. Инфракрасная технология основана на дистанционном контроле температуры, что позволяет получать точные температурные данные с безопасного расстояния, таким образом, решая основную проблему контактных методов измерения Высокоточный контроль температуры является ключевым фактором для обеспечения выходного качества измеряемого материала, энергоэффективности, сроков службы оборудования, а также обеспечения безопасности рабочего персонала. «Производственные предприятия имеют очень маленькие прибыли и всегда должны искать компромиссы между улучшением производства и стоимостью продукции» -, говорит Стив Абели, генеральный директор LumaSense Technologies Inc. «Теперь, с новым типом пирометров ISR 6-TI, производственные предприятия получают больше возможностей для измерения температуры, при лучшей стоимости измерительного оборудования». Устройства формирования ИК изображения (тепловидения) показывают картинку с распределением температуры на измеряемом объекте. ISR 6-TI Advanced достигает такого же результата по более доступной цене, предоставляя «относительное» отображение распределения температур. Подобный результат достигается путем совмещения температуры центрального пятна, полученного с высокоточного двухспектрального пирометра, с изображением с видео камеры, на которой установлен специальный коротковолновый инфракрасный фильтр. ISR 6-TI Advanced представляет собой интегрированную систему, работающую в коротком диапазоне длин волн (около 1 ), предназначенную для получения точных и достоверных показаний в температурном диапазоне от 700 до 1800. Аналоговый выходной видеосигнал передается на PC через USB, где «относительное» отображение распределения температур генерируется при помощи программного обеспечения InfraWin, которое также предоставляет возможности регистрации температурных показаний и другие аналитические функции.
Контроль анестезирующих агентов в операционных комнатах при помощи газовых мониторов INNOVA 1412
Контроль анестезирующих агентов в операционных комнатах при помощи газовых мониторов INNOVA 1412 Анестезирующие агенты это химикаты , которые при вдыхании вызывают состояние общей анестезии (наркоза). Общая анестезия – это состояние полной нечувствительности и бессознательности. Операции стали распространенным и обычным делом, благодаря применению общей анестезии, которая избавляет пациента от боли, при хирургических вмешательствах. Угроза пациента от анестетиков является минимальной, но рабочий персонал больниц, который регулярно находится в непосредственной к ним близости (хирурги, анестезиологи, медсестры , техники) попадает в группу риска. Угроза исходит от утечек газа из системы подачи анестетиков, а также от отходящих газов, выдыхаемых пациентами. Другим важным фактором является эффективность вентиляционных систем и их возможность выводить анестетики из операционной комнаты. Таким образом, мониторинг концентрации анестезирующих агентов рекомендуется проводить непрерывно. Требования законодательства в данной сфере варьируются в зависимости от страны. К примеру, в Италии, законодательство требует повсеместного контроля анестетиков в операционных комнатах и постоянного контроля в вентиляционной системе. Типичные анестетики, требующие контроля – это веселящий газ (оксид азота), изофлюран, энфлюран, севофлюран и десфлюран. Углекислый газ и изопропанол обычно тоже мониторятся с целью кросс-компенсации. Уровень углекислого газа также служит индикатором качества воздуха и эффективности систем вентиляции в операционной комнате. В дополнение к мониторингу операционных комнат и систем вентиляции, также проводится мониторинг комнат подготовки к анестезии и комнат пробуждения. Фотоакустический газовый монитор производства компании LumaSense – INNOVA 1412i прекрасно подходит для данного типа измерений. Монитор прост в эксплуатации и может измерять в реальном времени до 5 газов, которые могут включать в себя как интересующие анестезирующие агенты, так и углекислый газ. Результаты измерения компенсируются, учитывая уровень концентрации воды, который автоматически измеряется при помощи отдельного водяного фильтра. Преимуществами газовых мониторов LumaSense INNOVA 1412 также являются высокая стабильность и повторяемость результатов измерения, редкая необходимость в калибровке (примерно 1 раз в год), линейный отклик в широком динамическом диапазоне, высокая точность, а также измерение малых концентрации интересующих газов. Минимальные концентрации интересующих газов, которые могут быть измерены при помощи газового монитора LumaSense INNOVA 1412i: 0.03 ppm для веселящего газа (оксид азота) 0.006 ppm для севофлюрана 0.008 ppm для десфлюрана 10.5 ppm для углекислового газа 0.005 ppm для изофлюрана 0.005 ppm для энфлюрана Две итальянские больницы - Гражданский Госпиталь в Брешии (the Civil Hospital in Brescia) и Госпиталь при Университете Вероны (Integrated University Hospital in Verona), установили фотоакустический газовый монитор LumaSense INNOVA 1412 с распределительной системой INNOVA 1309. Данная система получает образцы воздуха из шести разных операционных комнат с 2 измерительных точек в каждой, а также комнат подготовки к анестезии и комнат пробуждения. Благодаря программному обеспечению LumaSoft Gas Multi Point 7860 software, детальные графики концентрации анестетиков могут быть получены с каждой точки круглосуточно. Фотоакустический газовый монитор LumaSense INNOVA 1412 с распределительной системой INNOVA 1309 На графиках, расположенных ниже, показаны концетрации оксида азота и севофлюрана, полученные из двух операционных комнат. Первый максимум зафиксирован в 7:35 и относится к проверке респираторной системы перед проведением операции. Все измерения хранятся в базе данных SQL сервера, дистанционный контроль обеспечивается при помощи интерфейса TCP/IP, встроенного в монитор INNOVA 1412. График измерения оксида азота и севофлюрана в операционной комнате График измерения оксида азота и севофлюрана в операционной комнате (точка в непосредственной близости к анестезиологу)