Внимание! Коммерческие предложения по тепловизорам для контроля
эпидемиологической ситуации (коронавирус COVID-19) на электронную почту!
8 800 777-48-96     – БЕСПЛАТНЫЙ ЗВОНОК ПО РОССИИ. ЭЛЕКТРОННАЯ ПОЧТА: DIAGNOST@DIAGNOST.RU
ВНИМАНИЕ! В связи с переходом на режим работы вне офиса с 30-03-2020 г.
просим контактировать с нами по е-мэйлу DIAGNOST@DIAGNOST.RU

+7 (495) 783-39-64 +7 (495) 783-39-64

Новости

Встреча представителей RTE

  Специалисты компании Диагност посетили встречу представителей производителей оборудования для акустического контроля качества RTE. На встрече было проведено обучения по повышению квалификации специалистов в области контроля литых деталей на наличие трещин, раковин и внутренних дефектов.  Данное мероприятие посетили пользователи системы RTE c Немецкого металлургического завода Gienanth GmbH. Директор по качеству данного завода, рассказал преимущества акустической системы RTE для контроля литых изделий. Завод сотрудничает с Российскими металлургическими заводами в плане обмена опыта по использованию новых технологий и делает совместные проекты.  После встречи с представителями компании RTE, специалисты посетили выставку Контроль 2015, на которой они провели ряд деловых переговоров о представлении новых приборов и технологий на территории Российской Федерации. 


Семинар по повышению квалификации

Компания Диагност приняла участие в семинаре Корейских представителей по применению новых технологий в электроснабжении Кореи.  Корейские компании совместно с электрической компанией Кореи KEPCO поделились новыми технологиями которые они применяются для повышения качество электроэнергии, снижения затрат на транспортировки и производство. Большое внимание было  уделено безопасности и снижения потерь электроэнергии. Для этого компания KEPCO, раз в год проводит технический осмотр и профилактические чистки опор напряжения раз в год. Применения специальных детекторов дефектов изоляторов, позволяет быстро выявить дефектный изолятор и заменить его.  Специализированные камеры наблюдения с инфракрасным датчиком позволяют определить места заледенений, которые могут повлечь за собой разрыв кабеля. Это послам очень актуально в горных районах, где присутствуют частые снегопады.  Компании производители представили новые типы кабелей для различных применений, бытовые сетевые фильтры, автоматы, рыле, мини выключатели, тепловые реле, электроизмерительное оборудование, гибридные системы измерения и светодиодные прожектора, трансформаторное масло, тепловизоры и много другое.  Поподробнее остановимся на ультразвуковом анализаторе, течеискатели, который применятся совместно с тепловизионным контролем для поиска коронных разрядов, частичных разрядов на линиях электропередачи.  Принцип действия прибора основан на улавливании ультразвуковых волн и переноса их в слышимый диапазон. Такие дефекты как раскрутка проводов, повреждение токорозрядников, касание посторонними предметами проводов, повреждения (частичный разрыв) проводов влекут за собой генерацию ультразвука. Данные сигналы являются узконаправленными и распространяются до 100 метров. Использование ультразвуковых анализаторов дефектов, течеискателей позволяет определить дефект на ранней стадии.  Прибор оснащен внутренней памятью и может записывать данные колебания для внесения в отчет или дальнейшего анализа на ПК. Компьютерная программа поставляемая с прибором позволяет архивировать и разделять дефекты по различным категориям.  При сравнении данного метода с тепловизионным контролем, можно сказать, что в начальной стадии тепловизионный контроль не может определить дефекты из за отсутствия нагрева, однако на этой стадии уже четко слышится ультразвуковые колебания.  В заключения хочу поблагодарить Корейских представителей, которые рассказали о новых технологиях применяемых в их система электроснабжения.  Если вы хотите узнать более подробнее о тех или иных приборах, обращайтесь с специалистам компании  Диагност они с радостью помогут вам. 


Beta LaserMike LaserSpeed позволяет алюминиевым заводам значительно улучшить качество продукции, повысить производительность и экономичность производства

Компания Beta LaserMike, ведущий мировой поставщик приборов для точного измерения и контроля, приняла участие в выставке «Aluminum China 2014 Conference and Exhibition», проходившей с 9 по 11 июля в международном экспо-центре Шанхая, представив свой доплеровский бесконтактный измеритель длины и скорости LaserSpeed. Точное измерение скорости и длины необходимо для контроля производственных затрат и улучшения контроля процесса в алюминиевой промышленности. Традиционным системам контактного измерения, таким как контактные ролики и тахометры, присущи такие проблемы как проскальзывание и механический износ. Это приводит к нежелательным поломкам и дорогостоящему обслуживанию, а также снижает качество выпускаемой продукции. Датчик LaserSpeed​ производства Beta LaserMike исключает ошибки измерения, характерные для контактных измерительных систем, благодаря использованию уникального метода измерения, основанного на использовании Эффекта Доплера. LaserSpeed ​​имеет заводскую калибровку, не подвержен износу ввиду отсутствия движущихся частей и обеспечивает точность измерений ± 0,05% с погрешностью ± 0,02%. Это отличная замена идея для контактных измерительных систем. Датчики LaserSpeed подходят для решения множества задач: измерение длины и скорости при непрерывном прокате, контроль резки, контроль стана холодного проката и других. Beta LaserMike предлагает полную серию датчиков LaserSpeed для ​​работы в суровых условиях производства алюминиевых сплавов: LS8000 - измерение длины и скорости при расстоянии до объекта контроля от 300 до 2500 мм, и скорости до 20000 м/мин; LS9000 – измерение нулевой скорости (остановки) и определение реверсивного движения; • LS8000E / 9000E – датчик, заключенный в защитный корпус из алюминия, для работы в горячих и агрессивных средах; LS8000X / 9000Х – датчик, заключенный в защитный корпус из нержавеющей стали для применения в тяжелых, экстремальных условиях, при наличии большого количества пыли, пара, брызг.


Средства неразрушающего контроля, используемые при проведении механизированного ультразвукового контроля

Временные требования ОАО «ГАЗПРОМ» распространяются на организацию сварочно-монтажных работ, работ по неразрушающему контролю качества сварных соединений, определяют выбор оптимальных технологий и оборудования по сварке и неразрушающему контролю при строительстве, реконструкции и капитальном ремонте линейной части и технологических объектов магистральных газопроводов из сталей с классом прочности до К65 (640 МПа) включительно, условным диаметром DN (Ду) до 1400 включительно, с толщиной стенки до 41 мм включительно. Данные требования стали основой для оснащения дочерних предприятий и структурных подразделений ОАО «ГАЗПРОМ» ультразвуковыми дефектоскопами на фазированных решетках с применением метода TOFD и механизированными сканерами при контроле сварных швов. Ранее для контроля сварных швов при проведении УЗК использовались ручные средства ультразвукового контроля (РУЗК): Ультразвуковые дефектоскопы Epoch 600, Дефектоскоп Epoch XT, ультразвуковой дефектоскоп Epoch 1000, дефектоскоп Epoch LTC. Кроме того, среди современных средств РУЗК ОАО «ГАЗПРОМ» рекомендует отдавать предпочтение приборам с ФР (ультразвуковые дефектоскопы с фазированными решетками) обеспечивающими получение большего объема информации для определения дефектов. К средствам РУЗК ФАР можно отнести популярный дефектоскоп Omniscan SX производства Olympus. Ультразвуковой дефектоскоп на фазированных решетках Omniscan SX хорошо зарекомендовал себя как портативный прибор на фазированных решетках. Временные требования ОАО «ГАЗПРОМ» не исключают применение дефектоскопа Omniscan SX для контроля сварных швов при проведении РУЗК. Однако при строительстве и капитальном ремонте газопроводов рекомендуется использовать механизированный УЗК. «Механизированный ультразвуковой контроль (МУЗК): контроль с ручным перемещением ультразвуковых преобразователей и автоматической записью результатов контроля, при обработке которых в соответствии с методикой проведения и интерпретации результатов измерений определяют координаты, вид (объемный, плоскостной, объемно-протяженный, плоскостной-протяженный) и геометрические параметры выявленных дефектов позволяющие оценить качество сварных соединений в соответствии с действующими нормами» Средства НК и материалы должны быть внесены в «Реестр сварочного, вспомогательного оборудования, оборудования и материалов для контроля и диагностики сварных соединений, технические условия которых соответствуют техническим требованиям ОАО «Газпром» и прошедшие процедуру квалификационных испытаний согласно СТО Газпром 2-3.5-046-2006. К средствам неразрушающего контроля при проведении механизированного ультразвукового контроля (МУЗК) относятся дефектоскопы на фазированных решетках производства Olympus Omniscan MX2. Дефектоскоп Omniscan MX2 внесен в указанный выше реестр ОАО «ГАЗПРОМ». Ультразвуковой дефектоскоп на фазированных решетках Omniscan MX2 успешно прошел квалификационные испытания. Система ФАР дефектоскопа для проведения МУЗК представлена в следующем комплекте: Ультразвуковой дефектоскоп Omniscan MX2 32/128/S с механизированным сканером Weldrover (допускается применение ручного сканера HSMT-Compact вместе с Omniscan MX2 32/128/S). Преимущества дефектоскопа на фазированных решетках Omniscan MX2 32/128/S с механизированным сканером WeldRover – это скорость контроля и удобство применения по сравнению с ручным сканером HSMT-COMPACT на базе Omniscan MX2. Средства МУЗК на базе ФАР дефектоскопов Omniscan MX2 должны обеспечивать выявление дефектов, предусмотренных в действующих нормативных документах. Испытания систем механизированного УЗК (МУЗК) производства Olympus на базе дефектоскопов Omniscan MX2 32/128/S с применением механизированного сканера WeldRover подтвердили эффективность использования средств МУЗК при проведении контроля сварных швов магистральных трубопроводов.


Контроль целостности отливок неразрушающими методами

Искусство литья в специальные формы зародилось тысячи лет назад, но только в последние десятилетия появились ультразвуковые приборы, позволяющие проводить контроль целостности отливок неразрушающими методами. До недавнего времени качество отливок проверялось только по характеру звука при ударах по ним молотком. Сегодня ультразвуковые толщиномеры и ультразвуковые дефектоскопы на микропроцессорной базе, используя ультразвуковые волны, позволяют получить гораздо больше информации о внутренней структуре отливок как из черных, так и цветных металлов. Ультразвуковые толщиномеры 38DL PLUS, 45MG, 27MG используются для измерения толщины стенок полых литых изделий, а ультразвуковые дефектоскопы Epoch 600, Epoch 1000, Epoch XT обеспечивают обнаружение неоднородностей внутренней структуры отливок, например скрытой пористости, а также наличия в них включений, рыхлот и трещин. Кроме этого, на основании результатов измерения скорости ультразвука можно определить степень содержания включений графита в чугуне. Надо отметить, что толщиномеры 38DL PLUS, 45MG, 27 MG применяются для измерения толщины не только отливок, но и для измерения толщины труб, пластмасс и многих других материалов. Дефектоскоп Epoch XT и EPOCH 1000 используется также для задачи контроля сварных швов, поиска дефектов в сварных швах. Более простыми дефектоскопами Olympus являются дефектоскоп Epoch LTC, Epoch LT и дефектоскоп Epoch 600.


Преимущества системы контроля герметичности резервуаров SDT TankTest

SDT TankTest позволяет осуществить поиск любых проблем, связанных с герметичностью резервуаров, подземных цистерн, как на поверхности так и в самой жидкости. Услышать больше. Проверка герметичности с помощью применения акустических систем включает в себя несколько этапов: Сбор полученных данных из цистерны Анализ данных, где была генерация звука. Определение герметичности. Как это работает? В цистерне создается отрицательное давление (вакуум). В цистерну помешаются два датчика. Один выше уровня жидкости, второй ниже уровня жидкости. В местах негерметичности будет генерироваться ультразвук. Если область негерметичности будет выше уровня жидкости в цистерне, то на первом датчики будет регистрироваться колебания. Такая же ситуация будет происходить, если течь будет находиться ниже уровня жидкости в цистерне, а регистрация в этом случае будет происходить на датчике номер 2. Краткий обзор системы. Ключевые особенности системы SDT TankTest: Два датчика размещённые в баке, цистерне, один в жидкости, а другой на поверхности жидкости. Ультразвуковой анализатор SDT270 для измерения значений с датчиков в дБмкВ. Вакуумный насос, для создания отрицательного давления в баке, цистерне (степень вакуума зависит от уровня жидкости в баке, цистерне) Регистратор статических и динамических параметров с датчиков из бака, цистерны для дальнейшего отчета. Подготовка отчета на компьютере. Сферы применения системы  SDT TankTest. Согласно требованиям экологических норм и с целью предотвращения денежных потерь система SDT TankTest применятся для контроля герметичности цистерн на бензозаправках, системы отопления, цистерн для хранения химических, биологических удобрений ихимикатов. SDT TankTest находит даже самые мельчайшие утечки, имеет сертификаты о взрывозащищённости и не требует раскапывания цистерн из земли. Когда достаточный вакуум достигается, оператор должен сравнить измерения, полученные без ваккума с датчиков расположенных в цистерн и значениях которые были получены при помощи использования вакуума в баке: Если цистерна герметична, то сигналы в обоих случаях не должны отличаться, а значение в дБмкВ, отображаемое на  ультразвуковом анализаторе SDT270 TankTest должно быть расположено вблизи этого значения или равно ему. Если цистерна негерметична, то датчики зарегисртируют ультразвуковые колебания, а значения на ультразвуком анализаторе SDT270 TankTest буду значительно больше, чем опорное без вакуума. В дополнение к статическим данным в дБмкВ также можно записать динамические данные в виде звуковой дорожки.


Новый ультразвуковой дефектоскоп Epoch 650 от компании Olympus

Компания Olympus, мировой лидер в производстве оборудования для  неразрушающего контроля, представила новый ультразвуковой дефектоскоп Epoch 650, который сочетает в себе все качества предыдущих поколений дефектоскопов и новые технологии. Epoch 650 - это продолжение популярного ультразвукового дефектоскопа Epoch 600 (запущен в 2010 году), который обеспечивает превосходную производительность и удобство использования для широкого круга приложений. Его интуитивное интерфейс подходит как для новичков, так и для опытных пользователей. Мобильность и эргономичность дизайна позволяет ему работать в практически в любой ситуации. Прибор Epoch 650 доступен в двух конфигурациях: крутилкой или с навигационной областью на клавиатуре. Большой цветной дисплей VGA с функцией  полноэкранного режима A-скан обеспечивает точной информацией сканирования как в условиях низкой освещенности, так и яркий солнечный день. Запатентованный приемник Digital High Dynamic Range отвечает требованиям EN12668-1: 2010.


Поиск дуговых разрядов, коронных разрядов, контроль трансформаторов

Контроль линий электропередач, дефектных изоляторов. Для поиска дефектных изоляторов, например на опорах ЛЭП, применяется ультразвуковой течеискатель SDT 270 с параболической антенной. Параболическая антенна это концентратор ультразвуковых колебаний, что позволяет производить анализ наличия дефектов на расстоянии до 100 м. Узкая диаграмма направленности антенны (3-4 градуса), дает возможность точно определить какой изолятор имеет дефект. Для помощи оператору в антенне встроен лазерный целее указатель, который видно даже в солнечный день при осмотре линий электропередач. Набор вспомогательных датчиков для контроля различного электрооборудования, делает прибор SDT 270 не заменимым помощником на ТЭЦ, ГРЭС и предприятиях транспортирующих электричество. Датчики прибора и составные части датчиков являются съемными, что обеспечивает их взаимозаменяемость и увеличивает срок службы прибора. Преимущества прибора SDT 1. Прибор имеет цифровую обработку и цифровое отображение сигнала, что позволяет контролировать дефекты линий электропередачи, не только на слух но и стоить ультразвуковые сигнал и его спекут на компьютере. 2. Прибор совместим с широким рядом ультразвуковых датчиков (около 80), а также есть возможность подключения термометра, пирометра, тахометра, датчика измерения потока вещества для поиска микро утечек. 3. Гибкий датчик может искать электрические разряды, частичные разряды в труднодоступных местах. 4. Функция записи ультразвуковых колебаний позволяет провести анализ сигнала на ПК и дать более точную информацию о дефекте, разрушающая корона или нет.


Система измерения температуры струи расплавленного металла

 Области применения системы измерения температуры струи расплавленного металла Так как бесконтактное измерение температуры расплавленного металла (в частности, чугуна) в тиглях невозможно, компания IMPAC разработала специальную систему для измерения температуры струи расплавленного металла во время разливки. Эта система удобна для использования в автоматических или полуавтоматических системах разливки металла и отображает температуру после каждого отдельного процесса разливки. Система состоит из специальной версии цифрового 2-спектрального пирометра ISQ 10(12)-LO/GS со встроенной программой и объектива, обеспечивающего специальную область измерения в форме линии. Использование 2-спектральной технологии необходимо, так как: Расплавленный металл имеет очень низкий и непостоянный коэффициент излучения Струя расплавленного металла постоянно перемещается, оставляя область измерения заполненной лишь частично Преимущества данной системы: Точные измерения температуры струи расплавленного металла Автоматическая регистрация значений температуры Возможность полного документирования температуры каждого отдельного процесса разливки Относительно невысокая стоимость Устранение или снижение необходимости иммерсионных измерений температуры расплавленного металла с помощью термопар Минимальное обслуживание Комплектующие Пирометр ISR 12-LO/GS 750 … 1800°C (MB 18) с оптоволоконным кабелем длиной 2,5 м для подключения объектива и объективом с областью измерения 5% или 12% Защитный кожух из нержавеющей стали (с системой водяного охлаждения) со встроенной системой воздушной продувки для объектива Регулируемая монтажная опора для защитного кожуха Соединительный кабель длиной 5 м с прямым разъемом Соединительный кабель длиной 5 м с прямым разъемом, термозащищенный до 200°C Источник питания NG DC, 24 В пост.тока Большой светодиодный дисплей ILD24-UTP, с высотой цифр 57 мм Выбор необходимых компонентов системы Состав системы измерения температуры струи расплавленного металла не является фиксированным. Состав системы должен соответствовать конкретным условиям контроля.  Такими условиями являются: Тип разливки: автоматическая, полуавтоматическая или ручная Диаметр струи расплавленного металла Время разливки Длина видимой струи расплавленного металла Объективы В зависимости от диаметра и направления струи расплавленного металла необходимо выбрать соответствующий объектив и расстояние до объекта контроля. Наведение объектива Объектив должен быть наведен таким образом, чтобы область измерения частично перекрывала струю расплавленного металла. Если струя перемещается, область измерения должна перемещаться вместе с ней. Даже двухспектральный пирометр требует определенного уровня сигнала для проведения точных измерений температуры струи расплавленного металла, не менее 10 - 20%. Для этого важно выбрать подходящий объектив, обеспечить соответствующее расстояние до объекта контроля и правильно навести объектив. В некоторых случаях оптимальным оказывается наведение объектива под некоторым углом к струе расплавленного металла. Уровень сигнала может быть отображен на компьютере с программным обеспечением InfraWin. Отображение уровня сигнала программой InfraWin Температурная диаграмма стандартного процесса разливки Схема работы системы измерения температуры струи расплавленного металла Специальные настройки Начальный и конечный этапы разливки нарушают правильный расчет температуры и должны быть исключены. К сожалению, эти этапы различаются в каждом конкретном случае. Так как обычными средствами невозможно задать длительность начального и конечного этапа разливки. Для этого нужна специальная система настройки и измерения. Для обеспечения автоматической работы измерительной системы и ее настройки в соответствии с используемой системой разливки металла следует использовать программное обеспечение InfraWin. Установка с использованием программы InfraWin Схема задания длительности начального и конечного сегмента Параметры работы системы Поддиапазон измерения температуры: Для того, чтобы система распознала начальный и конечный этапы процесса разливки, начало поддиапазона измерения температуры должно быть установлено на нужное значение (прибл. на 200°C ниже ожидаемой температуры струи расплавленного металла). Начальный сегмент (0...1024 значений, задается в %): Когда пирометр обнаруживает струю расплавленного металла и ее температура превышает начальное значение поддиапазона измерения, пирометр проводит проверку начального сегмента. Начальный сегмент задается в % от 1024 одиночных значений температуры (время отклика 2 мсек), превышающих начальное значение поддиапазона измерения. Предварительное время (0... 9,9 сек): Определенное время может быть установлено дополнительно к длительности начального сегмента, которое обеспечивает дополнительную задержку начала расчета температуры. Эта задержка может потребоваться, например, когда в начале разливки искры мешают получению точных значений температуры. Время измерения (0... 9,9 сек, 0 = авто): По умолчанию установлен автоматический режим измерения, при котором начало и завершение процесса разливки определяются автоматически в соответствии с установками начального сегмента. После завершения начального сегмента система начинает измерения температуры струи расплавленного металла. После того, как значение температуры расплавленной струи металла опускается ниже начального значения поддиапазона измерения (= завершению процесса разливки), система производит расчет полученного значения температуры процесса разливки. Для этого расчета система удаляет последние 1024 значения температуры, усредняет оставшиеся значения и отображает полученное усредненное значение на дисплее. Если установлено фиксированное время измерения, система распознает начало процесса разливки автоматически, и использует для расчета значения температуры процесса разливки значения температуры струи расплавленного металла, полученные в течение заданного времени, после чего отображает полученное усредненное значение на дисплее. В обоих режимах значение температуры отображается до тех пор, пока не будет получено новое значение. Дополнительное время (0... 9,9 сек): Часто в конце процесса разливки при закрытии клапана количество расплавленного металла резко сокращается или он начинает падать дискретными порциями. При этом система может начать новую серию измерений до завершения текущего процесса разливки. Установка дополнительного времени позволяет избежать подобных проблем. Анализ и регистрация данных Усредненные значения каждого одиночного процесса разливки сохраняются программой InfraWin и могут быть отображены в виде перечня или графика.


Газовый течеискатель GasCheck G

GasCheck G – газовый течеискатель для быстрого и точного обнаружения утечки с возможностью измерения. Настроен на утечку гелия. Возможно применение для вакуумных систем. Применяется для большинства промышленных и бытовых газов. Детектор утечки газа GasCheck G представляет новейшие технологии обнаружения газа. Его усовершенствованная полупроводниковая ячейка микро-теплопроводности позволяет улучшить чувствительность для быстрого, эффективного обнаружения утечек газа до куб. см / сек, мг / м³ или ррм уровнях. Предназначен для поиска места утечки газа, детектор утечки GasCheck G позволяет вам эффективного обнаружить практически любой газ или газовую смесь. GasCheck G имеет прочный и надежный корпус. GasCheck G дает стабильные, повторяемые показания величины обнаруженной утечки газа. Прибор оборудован ЖК-дисплеем, индикатором и звуковой сигнализацией утечки. Детектор утечек GasCheck G имеет возможность автоматического обнуления датчика для устранения влияния газовых примесей в окружающем воздухе вокруг него. Когда вы его включаете он сразу готов для работы. Прибор простой в использовании, имеет графический интерфейс и интуитивно понятный пульт. Полупроводниковый детектор и все рабочие элементы прибора не имеют расходных материалов, фильтров и позволяют долговременно использовать прибор без обращения в сервис. GasCheck G имеет возможность обновления до версий G2 и G3 которые имеют дополнительные возможности, без возвращения прибора производителю.


Огибающая: высокая чувствительность к дефектам и их раннее обнаружение (часть 3)

Фильтрация является важным этапом в процессе метода огибающей вибросигнала Первым этапом обработки сигнала при использовании метода диагностики по спектрам огибающей является обработка вибросигнала с помощью полосового фильтра. Правильная настройка фильтра обеспечивает удаление нежелательных частотных составляющих из вибросигнала и предотвращает затухание необходимых при анализе спектров огибающей вибросигнала частот. При выборе диапазона частот необходимо принимать во внимание рабочую скорость вращения машины и ее собственные частоты резонанса, которые частично зависят от конструкции подшипника, машины, а также от места монтажа. Поэтому для получения наиболее точных данных диагностики при первом использовании спектра огибающей часто следует поэксперементировать с частотами используемых фильтров. Сначала рекомендуем выявить в спектре вибросигнала «скопление» высокочастотных амплитудных пиков, относящихся к резонансу элементов подшипника. Нижняя граница фильтра (фильтр пропускания верхних частот) должна быть установлена выше частот зубчатого зацепления, но ниже этого «скопления» пиков, указывающего на резонанс подшипника. Выбор нижней границы фильтра осуществляется таким образом, чтобы отфильтровывались составляющие с высокой амплитудой и низкой частотой (которые вызваны вибрацией машин на частоте вращения). Это значительно улучшает соотношение сигнал-шум на частотах, которые нас интересуют. В вибросигнале именно эти низкочастотные вибрации, как правило, преобладают. Верхняя граница фильтра выбирается таким образом, чтобы отфильтровывались составляющие вибросигнала на максимально высоких частотах, вызванные другими вибрациями агрегата и сигналами, усиленными в акселерометре или в результате резонанса монтажного крепления. Для машин, оснащенных подшипниками качения, нижняя граница частотного фильтра, как правило, должна быть больше, чем величина 10-ти кратной рабочей скорости машины (10Х), для того чтобы удалить гармоники, кратные частоте вращения машины. Однако эти частоты не должны превышать половину величины собственных частот подшипника. Эти собственные частоты выступают в роли «несущих» частот и возникают при появлении ударных импульсов дефекта подшипника, поэтому затухание этих вибросигналов затрудняет диагностику дефекта при помощи спектров огибающей. Верхняя граница частотного фильтра, как правило, устанавливается на величину, в 60 раз большую, чем частота «перекатывания» тел качения по наружному кольцу подшипника (60X BPFO) или примерно в 200 раз больше, чем рабочая скорость вращения машины (200Х). Это приводит к затуханию высокочастотных помех и составляющих вибрации, часть из которых была усилена резонансом акселерометра. Эти правила довольно просты и обязательно должны учитываться специалистом по виброанализу при диагностике подшипников качения. Однако частоты, возникающие в зубчатых зацеплениях редукторов, затрудняют их применение для диагностики редукторов. Выходной вибросигнал после прохождения через полосовой фильтр (Рисунок 5) будет отображать резонансную частоту конструктивных элементов машины. Это более высокие частоты в форме волны, модулируемой дефектом. Ударные импульсы, возникающие при появлении в подшипнике дефекта, возбуждают эту «несущую» частоту, амплитуда которой будет затухать в геометрической прогрессии. В вибросигнале дефектного подшипника могут появиться ударные импульсы с различным временным интервалом, амплитудой и дополнительными частотными составляющими – на все это может оказывать влияние смазка, количество дефектов, степень их серьезности и нагрузка на подшипник. Несмотря на все это, метод диагностики при помощи спектров огибающей вибросигнала очень эффективен для таких сложных форм вибросигнала. Демодуляция амплитуды вибросигнала удаляет резонансные частоты Прежде чем получить огибающую отфильтрованного вибросигнала (демодулировать его), сначала нужно произвести его двухполупериодное выпрямление (Рисунок 6), которое удваивает «несущую» частоту и еще больше отделяет частоту ударных импульсов от «несущей» частоты. Следующий этап - это непосредственно извлечение огибающей. Амплитудная демодуляция выпрямленной формы вибросигнала удаляет несущую частоту и оставляет частоту повторения ударных импульсов дефекта. Для выполнения демодуляции используются следующие методы: детектирование пиковых значений (Рисунок 7), интегрирование и фильтрация высоких частот. Как правило, извлечение огибающей позволяет получить форму вибросигнала со спектральными компонентами, соответствующими частотам ударных импульсов и, как следствие, гармоникам частот дефекта. Частотные компоненты, не имеющие отношения к ударным импульсам, будут, как правило, иметь более высокую частоту, чем интересующие нас составляющие. Некоторые из них могут быть убраны при помощи фильтра высоких частот, в результате чего в вибросигнале останутся только частотам ударных импульсов и некоторые гармоники низкого порядка. Интерпретировать такой менее загроможденный спектр будет проще, потому что количество частотных составляющих будет меньше. Перед проведением анализа вибросигнала необходимо получить спектр огибающей. Частота ударных импульсов должна четко отображаться в спектре относительно других спектральных компонент вибросигнала. Гармоники частот дефектов, как правило, являются излишними компонентами метода огибающей и не используются для отслеживания этих неисправностей, за исключением тех случаев, когда присутствует большое число гармоник, указывающих на развитие дефекта. Частоты высоких пиков амплитуды присутствующие в спектре, могут коррелироваться с физическими параметрами машины. Обратите внимание на то, что по мере развития дефекта рядом с амплитудными пиками на частотах дефектов в спектре могут появляться боковые полосы частот, связанные со скоростью вращения машины. Если на спектре появляются нескоррелированные (посторонние) частоты, это может быть вызвано некорректной конфигурацией используемых фильтров или неправильными замерами вибрации при помощи вибродатчиков. Колебания на этих частотах могут быть вызваны и другими компонентами агрегата или же возникающими в процессе работы агрегата процессами. Продолжение следует...


Компания Beta LaserMike представила новую принадлежность для базовых моделей лазерных измерителей длины и скорости LaserSpeed серий 8000 и 9000

Компания Beta LaserMike представила новую принадлежность для базовых моделей лазерных измерителей длины и скорости LaserSpeed серий 8000 и 9000 - регулируемый кронштейн. Кронштейн LaserSpeed позволяет наклонять и вращать датчик в трех направлениях для достижения оптимального угла измерения при любых условиях установки. Верхний винт регулировки позволяет наклонять датчик вперед и назад для в диапазоне ± 6 градусов, не являющемся критичным для точности измерения. Два нижних винта регулировки позволяют поворачивать прибор на ± 8 градусов вокруг оптической оси. Монтажные отверстия на задней панели обеспечивают еще большую вариативность установки, позволяя легко поворачивать прибор до ± 25 градусов по часовой стрелке и против часовой стрелки для достижения оптимального угла измерения. Регулируемый кронштейн LaserSpeed имеет широкий спектр применений, связанных с плоскими, круглыми и другими профильными продуктами, такими как провода и кабеля, экструдированными материалами, бумагой / пленкой / фольгой, строительными материалами, и многими другими.


Тест-система SonicTC

Для тестирования чугунных тормозных дисков на наличие трещин и раковин Введение Метод акустического резонансного тестирования (АРТ) - это один из методов неразрушающего контроля, предназначенный для испытаний различных делатей на наличие дефектов. Использование данного метода позволяет быстро и со 100% точностью определить наличие дефектов. RTE Akustik + Prüftechnik GmbH имеет более чем 28 летний опыт в разработке и внедрения систем неразрушаюшего контроля для литых деталей. Основное применение системы - это поиск в литых деталях трещин, структурных дефектов и так далее. Также компания RTE предлагает тест-системы для контроля шума и вибрации материалов на основе инновационной системы SonicTC. Метод акустического резанансного тестирования (АРТ) Метод АРТ основан на физических законах, когда при возбуждении тело колеблется или вибрирует с характерной формой и частотой, имеет собственную резонансную частоту. Эти колебания как отпечаток пальца, неповторимы у разных деталей и имеют схожий характер у серийных деталей. Данные колебания регистрируются с помощью определенных микрофонов и анализируются. Наличие трещин, изменение структуры металла и неправильное закаливание изменяет звуковые колебания детали, позволяя со 100% точностью определить дефект. Преимущества АРТ • Оценивает весь тестируемый объект независимо от его размера; • Может работать автоматизировано; • Анализ дефектов на основе эталонных объектов; • Не требует жидкостей, газов, оставляет деталь в исходном состоянии; • Надежный,экономичный и эффективным метод. АРТ находит скрытые дефекты, невидимые на поверхности детали. Небольшие поверхностные дефекты литья, не возможно определить методом АРТ, для обнаружения таких дефектов применяется визуальный осмотр или 3D-сканеры. Однако АРТ чувствителен к температурным, размерным и плотностным изменениям. SonicTC – это надежный метод для контроля качества готовых изделий.


Мониторинг состояния подшипника и смазки

Для обеспечения максимального срока службы подшипников необходимо постоянно отслеживать их состояние и смазывать по мере необходимости. Обслуживание позволяет существенно снизить издержки, связанные с простоями и ремонтом. С целью обеспечения максимального ресурса подшипников компания SDT разработала ультразвуковой анализатор дефектов SDT 270 Bearing с набором датчиков для постоянного мониторинга состояния, предназначенных для анализа критических рабочих параметров подшипников и машин. Принцип работы анализатор дефектов SDT 270 Bearing - регистрация ультразвуковых волн, возникающих при трении деталей. Основное преимущество: ультразвуковые волны начинают появляться задолго до появления неполадки и выхода оборудования из строя. Например, в работающем подшипнике зарождается трещина во внутреннем кольце. На различных стадиях развития неполадки используются разные способы контроля. На начальной стадии возникают ультразвуковые волны из-за трения (применяем прибор SDT), затем вибрации (применяется вибродиагностика), далее повышается температура подшипника (применяется инфракрасная камера) и затем происходит разрушение детали. Подшипник с трещиной Для решения задач по мониторингу состояния подшипников всего несколько действий: Осмотр подшипников по графику с использованием прибора SDT 270 Bearing Для дальнейшего анализа нужно знать, скорость вращения подшипника и его нагрузку. При разных нагрузках и скоростях вращения тяжело определить состояния подшипника. Запись ультразвукового файла и показаний прибора Занесение данных в программу UAS (Программа для структуризации, хранения и анализа ультразвуковых сигналов) Ведения статистики состояния Анализ состояний подшипника Где можно применять ультразвуковой анализ состояния подшипников? При диагностики турбин, редукторов, электродвигателей, насосов, генераторов, прокатных станов, механизмов передач компрессоров, вентиляторов, конвейеров и так далее. Пример анализа статических данных от времени: Подшипник №6-43 - разрушение при 26.8 дБмкВ. Служба диагностики указала на необходимость замены подшипника, т.к. при анализе обнаружила резкое повышение уровня ультразвука до уровня пред аварийной сигнализации. При осмотре наружного кольца подшипника подтвердилось. Зачем нужен контроль количества смазки подшипников? Вычисление количества смазки, достаточного для нормальной работы подшипников; Предотвращение недостатка и избытка смазки для увеличения срока службы подшипников; Преимущества прибора SDT 270 Bearing по сравнению с аналогами: Прибор имеет широкий диапазон частоты приема ультразвука (10 - 210 кГц), которую регулирует оператор в зависимости от задачи и условий контроля. При выбранной частоте прибор имеет более узкую полосу пропускания, чем у аналогов, что позволяет исключить фоновый шум от постороннего оборудования при диагностике. Есть возможность регулировки усиления сигнала, причем прибор автоматически отображает на дисплее оптимальный уровень усиления для каждой конкретной ситуации. Прибор совместим с широким рядом ультразвуковых датчиков (около 80), а также есть возможность подключения внешнего или встроенного пирометра, тахометра. Подключенный датчик определяется и настраивается автоматически. Выводы: Диагностика состояния подшипников ультразвуковым способом позволяет установить степень их повреждения и категорию технического состояния: работоспособное, ограниченно работоспособное, недопустимое или аварийное. Ультразвуковой способ позволяет выявить неисправность на наиболее ранней стадии ее развития, на которой еще не применимы вибрационные способы контроля. Соотношение затрат на средства ультразвуковой диагностики и средства вибродиагностики (1 к 20 соответственно) позволяет считать ультразвуковой анализатор дефектов SDT270 необходимым инструментом в дополнение к традиционным средствам вибрационного контроля для оценки состояния механического оборудования


Специальный тепловизор IR236 для контроля температуры биологических объектов

Уникальный тепловизор IR236 может фиксировать температуру объектов с очень высокой точностью, что позволяет использовать данный тепловизор для контроля температуры человеческого тела. Обычные тепловизоры имеют точность измерения температуры +/- 2% от измеряемой величины, но не менее 2 градусов Цельсия. Лучшие из современных тепловизоров имеют точность измерения температуры +/- 1% от измеряемой величины, но не менее 1 градуса Цельсия. Специальные медицинские тепловизоры могут фиксировать температуру с точностью 0,5 градуса Цельсия и только тепловизор IR236 за счет использования опорного источника излучении – «черного тела» позволяет довести эту величину до 0,3 градуса Цельсия. Тепловизор IR236 может быть представлен в виде сетевой тепловизионной системы для контроля температуры биологических объектов. Тепловизонный комплекс фиксирует тепловизонные изображения в местах перехода границы и с высокой достоверностью определяет возможное присутствие людей с опасными заболеваниями. Встроенный тепловизор высокого разрешения с системой сигнализации и многоточечной технологией разрешения лиц делает этот тепловизионный комплекс идеальной системой для установки в аэропортах, портах и вокзалах. На данном рисунке изображена схема подключения тепловизора IR236. Варианты крепления тепловизора IR236: сверху и снизу. Мониторная стойка для наблюдения картины с тепловизора IR236 на большом экране. Варианты установки тепловизоров IR236 на реальном объекте. Для большего охвата области наблюдения несколько тепловизоров IR236 могут встраиваться в сеть. Программное обеспечение для тепловизора IR236 может быть на разных языках, в том числе и на русском. Тепловизор IR236 имеет контрастную шкалу для четкой фиксации превышения температуры объекта. Функция распознавания лиц в инфракрасном и видео диапазонах позволяет тепловизору IR236 идентифицировать потенциальных носителей вирусов с высокой точностью. В программном обеспечении тепловизора IR236 предусмотрена архивация информации с последующей обработкой сигналов тревоги по дате и температуре объекта.


Контроль анестезирующих агентов в операционных комнатах при помощи газовых мониторов INNOVA 1412

Анестезирующие агенты это химикаты , которые при вдыхании вызывают состояние общей анестезии (наркоза). Общая анестезия – это состояние полной нечувствительности и бессознательности. Операции стали распространенным и обычным делом, благодаря применению общей анестезии, которая избавляет пациента от боли, при хирургических вмешательствах. Угроза пациента от анестетиков является минимальной, но рабочий персонал больниц, который регулярно находится в непосредственной к ним близости (хирурги, анестезиологи, медсестры , техники) попадает в группу риска. Угроза исходит от утечек газа из системы подачи анестетиков, а также от отходящих газов, выдыхаемых пациентами. Другим важным фактором является эффективность вентиляционных систем и их возможность выводить анестетики из операционной комнаты. Таким образом, мониторинг концентрации анестезирующих агентов рекомендуется проводить непрерывно. Требования законодательства в данной сфере варьируются в зависимости от страны. К примеру, в Италии, законодательство требует повсеместного контроля анестетиков в операционных комнатах и постоянного контроля в вентиляционной системе. Типичные анестетики, требующие контроля – это веселящий газ (оксид азота), изофлюран, энфлюран, севофлюран и десфлюран. Углекислый газ и изопропанол обычно тоже мониторятся с целью кросс-компенсации. Уровень углекислого газа также служит индикатором качества воздуха и эффективности систем вентиляции в операционной комнате. В дополнение к мониторингу операционных комнат и систем вентиляции, также проводится мониторинг комнат подготовки к анестезии и комнат пробуждения. Фотоакустический газовый монитор производства компании LumaSense – INNOVA 1412i прекрасно подходит для данного типа измерений. Монитор прост в эксплуатации и может измерять в реальном времени до 5 газов, которые могут включать в себя как интересующие анестезирующие агенты, так и углекислый газ. Результаты измерения компенсируются, учитывая уровень концентрации воды, который автоматически измеряется при помощи отдельного водяного фильтра. Преимуществами газовых мониторов LumaSense INNOVA 1412 также являются высокая стабильность и повторяемость результатов измерения, редкая необходимость в калибровке (примерно 1 раз в год), линейный отклик в широком динамическом диапазоне, высокая точность, а также измерение малых концентрации интересующих газов. Минимальные концентрации интересующих газов, которые могут быть измерены при помощи газового монитора LumaSense INNOVA 1412i: 0.03 ppm для веселящего газа (оксид азота) 0.006 ppm для севофлюрана 0.008 ppm для десфлюрана 10.5 ppm для углекислового газа 0.005 ppm для изофлюрана 0.005 ppm для энфлюрана   Две итальянские больницы - Гражданский Госпиталь в Брешии (the Civil Hospital in Brescia) и Госпиталь при Университете Вероны (Integrated University Hospital in Verona), установили фотоакустический газовый монитор LumaSense INNOVA 1412 с распределительной системой INNOVA 1309. Данная система получает образцы воздуха из шести разных операционных комнат с 2 измерительных точек в каждой, а также комнат подготовки к анестезии и комнат пробуждения. Благодаря программному обеспечению LumaSoft Gas Multi Point 7860 software, детальные графики концентрации анестетиков могут быть получены с каждой точки круглосуточно. Фотоакустический газовый монитор LumaSense INNOVA 1412 с распределительной системой INNOVA 1309 На графиках, расположенных ниже, показаны концетрации оксида азота и севофлюрана, полученные из двух операционных комнат. Первый максимум зафиксирован в 7:35 и относится к проверке респираторной системы перед проведением операции. Все измерения хранятся в базе данных SQL сервера, дистанционный контроль обеспечивается при помощи интерфейса TCP/IP, встроенного в монитор INNOVA 1412. График измерения оксида азота и севофлюрана в операционной комнате График измерения оксида азота и севофлюрана в операционной комнате (точка в непосредственной близости к анестезиологу)


Цифровой измеритель коэффициента трансформации DTR 8510

DTR 8510 является переносным цифровым измерителем коэффициента трансформации, предназначенным для тестирования силовых трансформаторов, трансформаторов тока и напряжения. Будучи подсоединенным к предварительно отключенному трансформатору, прибор с высокой точностью измеряет соотношение числа витков в первичной и вторичной обмотках трансформатора и одновременно отображает полярность и ток возбуждения. DTR 8510 является полностью автоматическим прибором. Нет необходимости в калибровке, а также не требуется переключения диапазонов, манипуляции с органами управления и исключена процедура балансировки. В процессе каждого измерения прибор сам производит проверку целости измерительных цепей, выявляет наличие короткого замыкания, а также определяет неверное подключение измерительных проводов и обратную полярность включения. Вся информация при этом отображается на дисплее, что позволяет легко устранить неисправности. При отсутствии каких-либо неполадок, на дисплее отображается полученный коэффициент трансформации. Большой двухстрочный буквенно-цифровой ЖК-дисплей с регулируемой контрастностью и подсветкой гарантирует хорошую считываемость информации в любое время суток. Питание прибора осуществляется либо от аккумулятора, либо от стандартной сети переменного тока. Зарядка аккумулятора происходит автоматически при нахождении прибора в режиме питания от сети. Корпус DTR 8510, изготовленный из структурированного полипропилена, обладает высокой прочностью, герметичен, обеспечивает надежную работу в любых неблагоприятных условиях, в т.ч. и полевых. Диапазон измерений (автоматический): Трансформаторы напряжения/силовые трансформаторы: 0,8000:1…8000:1. Трансформаторы тока: 0,8000… 1000,0 Измерительные кабели:  длина 15 м с цветной маркировкой (поставляются в комплекте). Подключение к компьютеру:  USB2.0 Габариты/Масса:  272 х 248 х 130 мм / 3,7 кг.


Огибающая: высокая чувствительность к дефектам и их раннее обнаружение (часть 2)

Несмотря на то, что метод диагностики состояния оборудования при помощи спектров огибающей вибросигнала может показаться простым и понятным, точность результатов зависит от корректности применения этого метода. При использовании метода огибающей пользователю следует учесть следующие восемь аспектов: 1. РАННЯЯ ДИАГНОСТИКА: Огибающая обеспечивает раннее обнаружение дефектов, которые могли бы быть скрыты «фоновой» вибрацией машины. Если спектр огибающей помог выявить дефект, то это еще не означает, что поломка неизбежна. Тем не менее, для отслеживания развития этого дефекта необходимо увеличить частоту мониторинга вибрации этого элемента машины. Дефекты не будут выявлены до тех пор, пока они не разовьются до такой степени, что их взаимодействие с другими компонентами станет повторяющимся, а не произвольным. Всегда проводите сравнение с данными, полученными другими доступными вам методами измерений. 2. ДИАГНОСТИРУЕМОЕ ОБОРУДОВАНИЕ: Метод диагностики состояния оборудования при помощи спектров огибающей вибросигнала может применяться для выявления дефектов таких элементов машины, в которых происходит повторяющееся соприкосновение металлических деталей. Однако т.к. огибающая не является непосредственным (прямым) замером, спектр огибающей вибросигнала может усиливаться или ослабляться за счет воздействия многих посторонних факторов. Некоторые детали или характеристики машины могут повлиять на огибающую вибросигнала. Сочленения, соединения, сальники и демпферы с масляной пленкой под давлением и без него затрудняют передачу высокочастотных вибросигналов. Высокочастотные помехи скрывают ударные импульсы в поршневых машинах, электродвигателях переменной частоты и других агрегатах. Помимо этого, электромагнитные помехи в кабеле между вибродатчиком и устройством обработки сигналов могут влиять на целостность вибросигналов. 3. ВЫБОР ВИБРОДАТЧИКА: Амплитудно-частотная характеристика вибродатчика должна иметь необходимый рабочий диапазон, который включал бы резонансные частоты деталей и элементов машины (от 1 кГц до более чем 40 кГц). Собственная резонансная частота используемого вибродатчика должна существенно отличаться от представляющих интерес частот (частот ударных импульсов) машины, с тем чтобы избежать их наложения. Вибродатчик должен обладать максимальной степенью надежности, с тем чтобы обеспечить повторяемость измерений. 4. МОНТАЖ ВИБРОДАТЧИКА: Диагностика при помощи спектров огибающей вибросигнала во многом зависит от метода и места монтажа вибродатчика. Даже самое незначительное изменение места монтажа вибродатчика может привести к изменению результатов измерений. Поэтому для того, чтобы быть уверенным в том, что изменения показаний вызваны именно изменениями состояния машины, а не действиями специалиста по анализу вибрации, необходимо надежно закрепить вибродатчик на объекте измерения. Вибродатчик должен быть закреплен на плоской, чистой (голый металл) поверхности. При использовании датчиков с ручными щупами показания вибрации будут особенно подвержены вариации из-за силы прижатия вибродатчика к объекту измерения, угла его установки и от других факторов, индивидуально зависящих от человека, снимающего показания. Учитывая это, специалист по виброанализу должен быть очень внимательным, используя датчики с ручными щупами для диагностики дефекта по спектру огибающей. Закрепите вибродатчик таким образом, чтобы максимально снизить нестабильность показаний – например, прикрепите его к поверхности измерения при помощи монтажной шпильки или, если вы используете портативный сборщик данных, старайтесь закрепить вибродатчик к машине при помощи магнита, который обеспечит его равномерное прижатие к объекту с одинаковой силой и под одинаковым углом (перпендикулярно поверхности измерения) при выполнении каждого измерения. Поскольку высокочастотные сигналы, которые используются при преобразовании в спектр огибающей, обычно плохо передаются через детали и элементы машины, вибродатчик нужно расположить таким образом, чтобы между ним и диагностируемым элементом машины было минимальное расстояние. Это обеспечит минимально возможное затухание высокочастотного сигнала. Любые неплотные соприкосновения или потеря контакта вибродатчика с металлическими частями машины приводят к существенному затуханию сигнала. Передачу сигнала может полностью прервать масляная пленка, появляющаяся в любом месте соприкосновения металлических частей. Таким образом, дефекты, выявляемые при помощи спектров огибающей вибросигнала, всегда находятся рядом с вибродатчиком. 5. ВЫЯВЛЕНИЕ ДЕФЕКТОВ: Благодаря корреляции основных частот спектра и источников дефектов, неисправные компоненты машины, как правило, могут быть идентифицированы до разбора и осмотра подшипника. Это позволяет ремонтному персоналу заранее заказывать необходимые запасные части и планировать работы с учетом соблюдения технологии производства. Для получения точных данных при использовании метода огибающей необходимо принимать во внимание как частоты вибрации деталей и элементов машины, так и ее собственные частоты. Недостаточное или чрезмерное количество смазки или ее загрязнение может вызвать появление дополнительных частотных компонентов в спектре огибающей вибросигнала. Поэтому при появлении дефектов в первую очередь необходимо проверить состояние смазки. Развитие дефектов обычно сопровождается увеличением количества частотных компонентов подшипника и общим увеличением уровня спектра огибающей вибросигнала. Таким образом, основные частоты дефектов в спектре вибросигнала являются самым важным фактором, обеспечивающим корреляцию спектра с физическими дефектами оборудования. 6. ПРОГНОЗИРОВАНИЕ СТЕПЕНИ СЕРЬЕЗНОСТИ ДЕФЕКТА: Метод диагностики при помощи спектра огибающей вибросигнала предоставляет пользователям ценную информацию о техническом состоянии оборудования. Тем не менее, сам по себе метод огибающей не может предоставить всей информации для надежного и точного прогнозирования состояния элементов машины (например, подшипника или редуктора). В спектре огибающей частота коррелируется с определенным компонентом машины, но при этом рост амплитуды не обязательно будет коррелироваться с развитием какого-то дефекта. Известно, что амплитуда огибающей по виброускорению снижается по мере увеличения дефекта подшипника. По мере износа подшипника его микроскопические дефекты, вызывающие вибрацию, начинают сглаживаться, и резонанс, вызванный дефектом (и обнаруживаемый при помощи огибающей), уменьшается. Анализ спектров огибающей вибросигнала, используемый совместно с другими измерениями (общий уровень вибрации, акустические уровни шума и температура) позволяет более точно диагностировать состояние машины. 7. ПОСТОЯНСТВО СБОРА ДАННЫХ: Для обеспечения целостности тренда необходимо периодически и непрерывно осуществлять сбор данных. Как уже было упомянуто в пункте 4, это подразумевает использование одного и того же датчика, смонтированного в одном и том же месте одним и тем же способом. Это необходимо для того, чтобы избежать серьезных и систематических ошибок при измерении вибрации. В этом случае тренд можно использовать для наблюдения за развитием дефектов. Рекомендуется использовать постоянно закрепленные вибродатчики. 8. КОЛЕБАНИЯ ЧАСТОТЫ: Абсолютная частота сигнала спектра огибающей напрямую зависит от скорости вращения вала. Для обеспечения корреляции частот с вероятными дефектами необходимо знать скорость вращения машины, при этом на протяжении всего замера она должна быть постоянной. В противном случае, на амплитуду частотных компонентов будет влиять работа машины (которая зависит от частоты) и отклики виброизмерительной аппаратуры, а не изменение степени серьезности дефектов. Продолжение следует...


Огибающая: высокая чувствительность к дефектам и их раннее обнаружение

Перепечатка статьи: www.ge-energy.com/orbit (2004) Nathan Weller Старший инженер GE Energy nathan.weller@ps.ge.com Огибающая может предоставить специалисту по виброанализу подробную информацию о техническом состоянии критического оборудования на предприятии. Метод диагностики состояния оборудования при помощи спектров огибающей вибросигнала используется, главным образом, для ранней диагностики подшипников качения и редукторов. Спектр огибающей является важным параметром, используемым для оценки состояния машины. Имея точные данные и заручившись поддержкой сервисных специалистов от компании Bently Nevada, инженеры на предприятии могут быть уверенными в том, что критическое оборудование правильно эксплуатируется и обслуживается ими. Огибающая помогает выявлять дефекты оборудования на самых ранних стадиях их развития - до того момента, когда они будут выявлены другими методами диагностики. Без ранней диагностики дефектов при помощи спектров огибающей вибросигнала персонал сможет обнаружить увеличение общего уровня вибрации, загрязнение масла и, как следствие, рост температуры подшипника лишь тогда, когда дефект уже будет сильно развит. Все это существенно сокращает «жизненный цикл» неисправных элементов машины и увеличивает степень повреждения оборудования. Огибающая позволяет выявлять и анализировать низкочастотные, повторяющиеся вибросигналы, выделяя их из общего уровня вибрации машины. Таким образом, она позволяет заблаговременно обнаруживать развивающиеся дефекты элементов или деталей машин при контакте металл-металл. Несмотря на то, что в этой статье приведены примеры использования метода огибающей для диагностики подшипников качения, этот метод используется также и для диагностики редукторов и электродвигателей. Необходимо отметить, что для успешного применения и анализа спектра огибающей вибросигнала необходим опыт. Огибающая – это один из инструментов специалиста по анализу вибрации, и лучше всего использовать его совместно с другими методами диагностики и мониторинга оборудования. Огибающая позволяет выделять интересующие компоненты вибросигнала Метод диагностики при помощи спектров огибающей вибросигнала состоит из нескольких этапов; он предполагает выделение интересующих виброимпульсов из общего уровня вибрации (Рисунок 1). Взаимодействие элементов подшипника качения друг с другом и с дефектами приводит к возникновению структурного резонанса в опоре подшипника. Сейсмодатчик измеряет вибрацию, далее этот сигнал отфильтровывается полосовым фильтром, и в результате в вибросигнале остаются только компоненты в диапазоне частот резонанса элементов подшипника. Отфильтрованный сигнал выпрямляется, из него извлекается огибающая, при этом удаляются частоты резонанса элементов подшипника и остаются только частоты ударных импульсов дефектов подшипника. Затем фильтр высоких частот удаляет из сигнала высокочастотные компоненты и вычисляется спектр. Частотные компоненты зависят от физических параметров подшипника, а тренд спектра вибрации показывает развитие дефектов. Анализ огибающей необходимо начинать с поиска источника вибрации. При взаимодействии элементов подшипника друг с другом и с дефектом возникают ударные импульсы, которые передаются на корпус машины и вызывают вибрацию. Ударные импульсы возбуждают колебания на частотах собственного резонанса структурных элементов подшипника, вызывая так называемый «звон» (Рисунок 2). Амплитуда данного «звона» постепенно затухает до следующего удара, который заново возбуждает резонанс. Таким образом, амплитуда дефекта модулирует отклик собственного резонанса на частоте ударных импульсов. Ударные импульсы дефекта становятся частью общего уровня вибрации. Поскольку эти ударные импульсы имеют высокую частоту, то для измерения вибросигнала для огибающей обычно используются акселерометры. Поэтому часто огибающую называют еще огибающей по виброускорению или огибающей высокочастотного виброускорения. Высокочастотные вибросигналы, такие как, например, несущая частота сигнала дефекта, плохо передаются через однородный материал корпуса машины; дефекты металла, болтовые и сварные соединения вызывают существенное затухание вибросигнала (Рисунок 3). Поэтому необходимо выбирать кратчайший путь от места замера вибрации до ее источника, для того чтобы этот слабый высокочастотный сигнал дошел до акселерометра без изменений; акселерометр следует смонтировать как можно ближе к подшипнику и рядом с «несущей», нагруженной зоной подшипника, в которой ударные импульсы будут лучше передаваться через корпус машины к датчику. Выходной сигнал акселерометра, изображенный на рисунке 4, содержит три основные частоты: вибрацию ротора с относительно низкой частотой и высокой амплитудой, модулированную частоту резонанса элементов подшипника, а также другие компоненты высокочастотной вибрации, включая гармоники частот резонанса элементов подшипника. Несмотря на то, что вибросигнал имеет сложную форму, по спектру огибающей можно определить частоту ударных импульсов дефекта, которая, в свою очередь, предоставляет специалисту по виброанализу важную информацию о техническом состоянии машины. Продолжение следует...


Преимущества волоконно-оптических систем LumaSmart и LumaShield производства фирмы LumaSense Technologies

Метод контроля температуры обмоток трансформаторов в реальном времени, с помощью волоконно-оптических систем LumaShield и LumaSmart, дает ряд преимуществ. В отличие от обычных способов волоконно-оптические технологии позволяют измерять температуру участков потенциально опасного нагрева («горячих» точек) непосредственно на обмотке. Кроме того, прямые измерения, проводимые при помощи волоконно-оптических систем для контроля температуры LumaShield и LumaSmart, позволяют: проверять правильность конструкционных решений при изготовлении трансформаторов; безопасно увеличивать обычную нагрузку без повреждения трансформатора или уменьшения срока его службы; обеспечивать реальную возможность динамической нагрузки; точно задавать уровень температуры при производстве трансформаторов, который может использоваться в качестве опорного при эксплуатации трансформаторов; обнаруживать нарушения работы системы охлаждения, которые невозможно определить при моделировании схем изменения температуры обмотки; планировать обслуживание трансформатора; непосредственно управлять системами охлаждения «горячих» точек обмотки, тем самым продлевая срок службы трансформатора. Проверка правильности конструкции трансформаторов и качества изготовления с помощью систем LumaShield и LumaSmart Увеличение температуры в определённых точках обмотки при заданной нагрузке – необходимый параметр для определения возможности увеличения нагрузки на трансформатор. Стандартом IEEE Std. C7.12.00 установлено, что максимальная температура самой «горячей» точки не должна превышать 80°C. Предполагалось, что температура «горячих» точек может быть рассчитана на основании измерения температуры масла, а увеличение средней температуры обмотки – сопротивления в процессе стандартного коммерческого теста в соответствии со стандартом IEEE C57.12.90 (тепловые испытания). Однако результаты тестирования в соответствии с требованиями IEEE и IEC показывают, что температура, рассчитанная с помощью методов моделирования, значительно отличается от реального значения. Таким образом, при проведении тепловых испытаний рекомендуется использовать волоконно-оптические датчики, т.к. результаты , полученные в реальном времени с помощью волоконно-оптических систем LumaShield и LumaSmart, являются достоверными. При этом индикаторы температуры обмотки трансформатора следует настроить в реальном времени в соответствии с показаниями систем LumaShield и LumaSmart.


+7 (495) 783-39-64 | 8 800 777-48-96 | diagnost@diagnost.ru | 105187, г. Москва, Окружной проезд, дом 15, корп. 2 | Политика конфиденциальности
©1991-2019 OOO «Диагност». Продажа диагностических и измерительных приборов: тепловизоры, пирометры, дефектоскопы, толщиномеры, течеискатели, твердомеры, анализаторы металлов и сплавов, электроизмерительные приборы.